1.空间天气的历史研究

空间天气的历史研究

与空间天气相关现象_空间天气与日常天气的异同

几个世纪以来,人们已经注意到空间天气造成的极光,但不理解它。中世纪欧洲航海家使用天然磁石磁罗盘导航仪时注意到石头的方向有时候会偏离磁北极。这是1600年在《De Magnete》书中描述的,但是直到19世纪才知道是由空间天气造成的。1840年空间天气在各区域的不同时段影响了第一份电报。1859年的巨大太阳风暴中断了全球的电报业务,被当时的许多主要报纸刊登报道。Richard Carrington把这次中断与一天前观测到的太阳耀斑以及与电报中断同时发生的地磁场大的偏转(磁暴)正确地联系起来。根据这种联系,空间天气已经成为太阳物理学范围内的学术研究课题。KristianBirkeland通过在他的实验室中人工制造极光解释了极光的物理过程,并预测了太阳风的存在。随着无线电在商业和军事领域的应用,人们注意到极端平静和噪声存在周期性。在1942年的大太阳期间雷达受到的严重干扰引导人们发现了空间天气的另一个方面:太阳射电爆发(太阳耀斑产生的覆盖很宽频率范围的无线电波)。

在20世纪,由于军事和商业系统都依赖于空间天气系统的影响,人们对空间天气越来越感兴趣。通信卫星是全球贸易的重要组成部分,气象卫星系统提供地面天气信息,全球定位系统的卫星信号在各种各样的商业产品和过程得到广泛使用。空间天气现象会干扰或破坏这些卫星,或者干扰这些卫星的无线电上行和下行信号。空间天气现象会在长距离输电线路中产生有损害作用的浪涌电流,也会使飞机上的乘客和机组人员暴露在辐射之中,特别是在极地航线上。

国际地球物理年(IGY)大大促进了空间天气研究。IGY期间获得的地基数据表明,极光发生在距离磁极15~25纬度,宽5~20度的极光椭圆带上,是一个永久的发光区域。1958年,Explorer I卫星发现了范艾伦带,也即辐射粒子被地球的磁场束缚的区域。1959年1月,苏联卫星Luna 1第一次直接观察到了太阳风,并对其强度进行了测量。1969年,INJUN-5(又名Explorer 40)第一次直接观察到由太阳风带来的地球高纬电离层电场。20世纪70年代早期,Triad数据表明在极光椭圆带和磁层之间永久的存在电流。由于这些及其它重要的发现,空间天气研究快速增长。

在我们的太阳系中,空间天气主要受太阳风的速度和密度,以及太阳风等离子体携带的行星际磁场(IMF)影响。很多物理现象都与空间天气有关,包括地磁暴和亚暴,范艾伦辐射带能量增强,电离层扰动,星地无线电信号闪烁,远距离雷达信号闪烁,极光和地球表面地磁感应电流。日冕物质抛射和与其相关的激波也是重要的空间天气驱动源,因为它们可以压缩磁层并引发磁暴。由日冕质量抛射和太阳耀斑加速的太阳高能粒子,也是一个重要的空间天气驱动源,因为它们能损坏航天器中的电子器件(如Galaxy 15的失效),并威胁到宇航员的生命。

20世纪90年代,空间环境对人类系统的影响使得人们越来越明显的感觉需要一个更加协调的研究和应用框架,空间天气这个术语也随之被人们使用。美国国家空间天气的目的就是将研究集中在受空间天气影响的商业和军事群体的需求上,将研究团体和用户群体联系起来,协调各业务数据中心,并更好地定义用户群体的需求。这个概念在2000年转化为行动,在2002年转化为实施规划,并在2006年进行评估,在2010年进行战略修订。修改后的行动将在2011年发布,修订后实施规划将在2012年发布。国家空间天气的一部分是让用户知道空间天气影响了他们的业务。

早在1994年,美国就批准实施了“国家空间天气”,包括部门、研究机构、大学、企业在内的跨部门持续协作,增强并巩固了美国在空间天气领域的领先地位。

特别引人关注的是,美国军方在空间天气研究中始终占据主导地位,关乎国家安全的空间天气探测设施和探测产品始终居于军方控制之下。例如,在太阳观测方面,美军拥有分别位于澳大利亚、意大利、马萨诸塞州、新墨西哥州和夏威夷州等地的太阳地基观测网,对太阳实施号称“日不落”式的连续观测;在电离层探测方面,美军拥有遍布美国全境和世界主要地区的电离层综合探测网;在卫星轨道空间天气探测方面,美军拥有部署于GPS等系列卫星的天基空间天气探测网。他们还在研究成果的业务转化方面给予了特别关注,比如,美国空军著名的第55中队,就是专门从事空间天气业务的专业力量。